
Keypoint Density based Region Proposal for object detection using rCNN

JT Turner
Knexus Research Corporation

National Harbor, MD
jt.turner@knexusresearch.com

Kalyan Gupta
Knexus Research Corporation

National Harbor, MD
kalyan.gupta@knexusresearch.com

Brendan Morris
University of Nevada, Las Vegas

Las Vegas, NV
brendan.morris@unlv.edu

David Aha
Naval Research Lab

Washington, DC
david.aha@nrl.navy.mil

Abstract

Recent changes to the topology of regional convolutional
neural networks (rCNN) have allowed them to obtain near
realtime speeds in image detection. We propose a method
for region proposal alternate to selective search which is
used in the current state of the art object detection [3] and
introduce the fine grained image datasets. In a maritime
surveillance setting, it maybe important to not only iden-
tify an object approaching your position but also know the
type of vessel (e.g., a civilian fishing vessel or an enemy de-
stroyer). Our region proposal technique Keypoint Density
Region Proposal (KDRP) is able to achieve levels of per-
formance that are not no worse than selective search at a
very high level of significance, while only taking 49% of the
time of selective search in the rCNN pipeline.

1. Introduction
As Convolutional Neural Networks (CNN) have evolved

from the early work of Lecun [9] where they were used pri-
marily in classification, to the point where they have been
acheiving state of the art performance in object detection
tasks [4]. The transition to them being applicable to detec-
tion took modifications in how they were trained and de-
ployed, and although they were achieving high accuracy, it
took around 13 seconds per image in the first generations of
the rCNN.

Although detection accuracy is important in application,
for practical tasks involving video, 13 seconds is unusable
for real time; it would have to be run offline. An improve-
ment to the rCNN a year later called fast r-CNN [4] did ex-
actly what the name implied; sped up the detection pipeline.
With these algorithmic improvements, the object detection
pipeline could be performed in under 2 seconds. Although

this is an enormous improvement, it is still not quite real-
time.

Fast r-CNN is the current state of the art results for the
widely used pascal VOC of object detection. We elected not
to test on this dataset because it is not finegrained, and we
intend to show that the algorithm is applicable on the hard
task of fine grained object detection. The more traditional
approach to image classification tasks is keypoint descrip-
tors and local feature descriptors [10], which are binned into
histograms and compared to other keypoints to match sim-
ilarly featurized objects. The work of Felzenszwalb [1] on
deformable part models and detection of parts gave rise to
specialized part models that operate by transfer of likely lo-
cations [5], which achieved great performance on the fine-
grained Caltech UCSD bird dataset [15].

Our goal is to improve upon the current state of the art in
fine grained visual object detection in such a way to reduce
the time to less than one second; less than 50% the time of
fast r-CNN. For this to be useful, our faster algorithm must
perform no worse than fast r-CNN by accuracy.

2. Fast-rCNN Detection Pipeline
Here we lay out the proposed pipeline of using the Fast-

rCNN system of Girshick, which is followed by our system.

1. Model Training

2. Region Proposal

3. Feature Extraction

4. Non Maximum Suppression

5. Hypothesis Selection

Unless otherwise stated, an image will be defined as an
RBG pixel matrix between the sizes of 350 to 500 length or
width from the CUB-200 bird dataset.
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2.1. Model Training

Although this is not actually a part of the detection
pipeline, it is necessary, and none of the subsequent steps
have any impact on object detection if a model is not trained
first. Training an rCNN is normally done using the open
source library caffe [7]. The only way that our pipeline
differs from the standard neural network training regiment
is that we provide region coordinates at training time, and
have an additional layer to display the coordinates of the re-
gion after convolution. This can all be implemented using
caffe.

Training a network is still a time intensive process for
rCNNs. Although it helps to start with an imagenet trained
model and finetune from there, generally at least a week of
finetuning is needed to produce state of the art performance.
Because minimizing training time is not the primary con-
cern of this study, we used selective search for the ROIs
in the training of the rcnn. Future work will be done using
KDRP, or a concatentation of both region proposal networks
to see if it boosts performance from training.

2.2. Region Proposal

Region proposal is the first step of the object detection
pipeline, and must be done adequately for object detection
to work. Assuming we have an image I that is of dimen-
sions w × h, a region is a subset of that image r, with di-
mensions w′ × h′, where 0 < w′ ≤ w, and 0 < h′ ≤ h.
The purpose of region proposal is to generate enough re-
gions such that there is a high probability that one of the
regions r in our set of all regions proposedR be an accurate
region that bounds the ground truth object.

Because our pipeline never infers bounding boxes
through and calculations, and cannot modify the boundaries
of the bounding box, the region that contains the object
must be generated or detection will fail. In the first imple-
mentation of fast r- CNN [3], the region proposal method
was selective search. In section 3 we will discuss this
method, and how it varies from our new method KDRP.

2.3. Feature Extraction

Once regions have been proposed, we must use our
trained model to featurize the regions. Featurization is done
in the standard way of multiplying the image matrix through
the trained model, the only difference being that there are
two output layers from the fast r-CNN model. For a model
trained on n classes, the output from the classification layer
will be n + 1 probabilities, and for the bounding box co-
ordinates of these classes, there will be 4n + 4 numbers.
The reason that we are adding one to the number of classes
is that we allow a ’background’ class. Each of the regions
classification is the softmax of the n + 1 probabilities, and
each class corresponds to a 4-tuple of coordinates.

The main algorithmic improvements that allow us to pro-
cess regions so quickly is the region of interest pooling
(ROIpooling) of [3] which is a simplified variant of the spa-
tial pyramid pooling of [6]. The convolutional, pooling, and
nonlinear transforms that occur in the network before are in-
put size invariant (as long as they are larger than a minimum
size such that the sliding window can be passed over the
various layers of convolution). The computationally expen-
sive convolutional phase needs to only happen once; in this
implemntation the ROIs that we are detecting are passed
through the network at the same time as the image itself,
and translated to the ROIpooling coordinates. Once the
ROIpooling layer has been computed, the only computa-
tion that needs to be done multiple times are the multiplica-
tions between the fully connected layers, and dense matrix
multiplications have been optimized to be extremely fast on
GPUs.

Feature extraction was traditionally the bottleneck in us-
ing r-CNN’s; that they are now able to be computed for an
image faster than region proposals presents new opportuni-
ties for applications (such as real time object detection at 1
frame per second), but also puts a new burden on finding
faster and more efficient region proposal methods.

2.4. Non Maximum Supression

Non Maximum Supression is a technique that has been
used for r-CNNs since their genesis in 2013 [4]; they are an
essential technique for dealing with an unknown number of
objects in the image, and for making hypothesis selection
faster. Non maximum suppression is very fast; although
it is dependent on the number of regions, because it runs
in O(mcn2) time (and in practice is much faster) where n
is the number of regions, m is the number of images pro-
cessed, and c is the number of classes it is almost an un-
noticeable time component for detection. A description of
non maximum suppression is given in [4], with an example
figure 1.

2.5. Hypothesis Selection

The pipeline culminates naturally at hypothesis selec-
tion, which like non maximum suppression is a very fast
process with respect to region proposal or featurization. Hy-
pothesis selection can be undertaken in two different ways;
in the first of which we tell the algorithm exactly how many
objects to detect in the image (figure 2a shows a situation
where we tell the hypothesis selection algorithm there is a
single object in the image, when there is in fact 4). The
second, more realistic scenario in which it is unknown at
evaluation time how many objects if any are in the ground-
truth of the image, and the hypothesis selection algorithm
must determine which of its thousands of regions are valid
detections using the confidence output from the r-CNN, as
shown in figure 2b.
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(a) Hypothesis selection forced to choose top-k, k = 1. (b) Hypothesis selection uses all detections over probability threshold

Figure 2: Comparison of hypothesis selection implementing top-k selection, or selecting all detected objects greater than a
known probability threshold

Figure 1: Non Maximum Suppression example; the three
green regions were selected because they were the highest
probability region in the area that did not overlap at a frac-
tion greater than α with a higher probability region. The
red regions are suppressed because the region they occu-
pied was already occupied at a fraction greater than α by a
higher probability region.

Every stage of the fast r-CNN pipeline is identical except
for the region proposal between the selective search existing
state of the art, and our proposed KDRP algorithm.

3. KDRP

The current standard for region proposal is selective
search [14], an image segmentation method that takes uses
multiple image scales, and 8 opponent colorspaces to gener-
ate regions. This is time intensive, and creates several thou-
sand regions, but it is important that there are so many re-
gions generated, because if the region containing the ground
truth object with an intersection over union above a pre-set
threshold is not generated, than the object cannot possibly
be detected.

Our algorithm for generating regions is known as KDRP,
and has a 2 phase approach to generate any arbitrary k re-
gions of an image. Psuedocode for KDRP is shown in al-
gorithm 1. SIFT features correspond to areas of a strong

change of the gradient of the image; these areas have been
known to be where distinguishing points of the image ex-
ist [10]. Our theory is that by capturing more regions that
have a high density of these descriptive keypoints, we will
have at least one region that is an accurate bound of the ob-
ject we are trying to detect.

Algorithm 1 Keypoint Density Region Proposal algorithm.

1: procedure KDRP(image, regions needed) . image
is the pixel matrix, regions needed is an integer

2: Generate SIFT-like keypoints on image
3: Slide windows over image to get µ, σ of keypoint

density
4: while len(len output) < regions needed do
5: Randomly generate region r in image
6: Calculate percentile p sample of r with µ, σ
7: if Binomial trial(p) successful then
8: Append r to output
9: return output

1. Generate Keypoints- Standard keypoint detection al-
gorithms are used to find and plot points of interest
on the image. We performed cross validation using
permutations of 8 keypoint methods on the UEC food
dataset, and CUB bird dataset. The greatest perfor-
mance came from Shi Tomasi features, ORB features,
and STAR features. This differs from the existing
method of segmentation and nearest neighbor search of
color segments, under the assumption that regions will
contain strong corners and edges of the image, which
is needed for recognition and detection.

2. Region Hypothesis- A square window is slid over the
image at a uniform stride, and density of key points
from Stage 1 is sampled. Once we know the mean
and standard deviation of the region density, we begin
stochastically generating regions (not of fixed width to
height ratios), and examine how the density of this ran-
dom region compares to the baseline just established.
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Figure 3: KDRP example of Max Scherzer batting. Red
keypoints are ORB features, green keypoints are STAR fea-
tures. Only 5% of the regions are shown for increased visi-
bility.

For a region in the nth density percentile, we keep
this image for detection following a binomial sampling
with an n% chance of success. The reason for this
sampling is that it has been shown before to reduce bias
of algorithms [13]. This differs from traditional rCNN
with selective search in the time required to produce
the equivelent number of regions.

As can be seen from algorithm 1, a major advantage of
KDRP is that the exact number of regions to be used can
be selected. Selective Search implementation in matlab (as
used in [4] [3]) has a fast and slow mode, but is unable to
generate more regions than the slow mode generates.

We theorize that KDRP’s simplicity of generating key-
point descriptors (which was been shown to be fast [10], and
then randomly generating regions to be much faster than
converting an image into multiple color spaces, and per-
forming a greedy nearest neighbor search as done in selec-
tive search. An example of regions generated with KDRP is
seen in figure 3.

4. Experiments

4.1. Hypothesis

In this experiment, there are two different results that we
wish to measure to get a comprehensive evaluation of selec-
tive search against. The first is accuracy of detection; to be
successful we would like to show using a paired t-test there
is not a statistically significant difference between detection
with KDRP, and detection with selective search. The other
metric we are testing is execution time of the pipeline; we

Table 1: Description of datasets used

Dataset Train/Test Num Classes Instances per image
UEC-100 [11] 10205/2966 100 variable, [0, n]
CUB-200 [15] 5994/5794 200 1

anticipate the KDRP detection pipeline to take about 50%
less time than the selective search detection pipeline.

4.2. Datasets

We use two datasets in our experiment; the UEC-100
food dataset, and the CUB-200 bird dataset. Since both
of these datasets include bounding box coordinates, they
are both suitable for detection. The characteristics of the
datasets are given in table 1.

The two datasets both offer unique challenges for detec-
tion, beyond them both being fine grained. The CUB dataset
is notoriously difficult, especially when not using the addi-
tional metadata annotations such as beak and wing location.
The UEC dataset on the other hand has a variable number of
groundtruth objects in the in the image, so we cannot hard
code the algorithm to search for a certain number of items.
The way that this is handled was discussed in section 2.5.

4.3. Experimental Design

4.3.1 Algorithmic Differences

Our goal is to keep as much of the pipeline the same as pos-
sible, to get a direct comparison between selective search
and KDRP. Looking at the complete detection pipeline in
section 2, the only difference is the region proposal step.
This of course effects the features generated, the non-
maximum suppression, and the hypothesis selection, but
that is being measured by the overall accuracy and time.

For training, we fine tuned the pre-existing imagenet
model VGG16 [12], only modifying the output layers of the
classification and bounding box regression steps. No other
layers were modified (fully connected or convolutional).
The finetuning was over the course of 5,000,000 iterations
with a base learning rate of .01, decreasing by a factor of
10 every 500,000 iterations. Momentum term was set to .9,
and weight decay was set to .0005. The training proposed
regions were generated by selective search for both the se-
lective search and KDRP pipelines.

Using the matlab code of [14], selective search was used
to generate region proposals for selective search. The num-
ber of regions per image was variable, as it is dependent on
color features of the image, although it averaged to around
2,000 per image. The number of regions generated with
KDRP was set to 2,250; this was the maximum number of
regions we found that we could use without the total time
exceeding our predetermined threshold of 1 second per im-
age. The study of the effect of using less regions per image
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warranted investigation, and is in the ablation studies sec-
tion 4.5.

Featurization has no tunable parameters, non maximum
suppression was applied for high probability windows with
an overlap exceeding 30%, as per [4], and the threshold for
selecting a region for hypothesis selection when there is an
unknown amount of objects in the ground truth was set to
p > .88. This value was determined through cross valida-
tion.

4.3.2 Evaluation Metrics

There are two hypothesis that we wish to test; time and ac-
curacy. For time we would like to show that the mean time
to run the full KDRP detection pipeline on an image is less
than 50% the selective search detection pipeline. Assum-
ing that the mean pipeline detection time of selective search
is µSS , and the mean pipeline detection time of KDRP is
µKDRP , then our hypothesis are

H0 :
1

2
×
(
µSS

)
< µKDRP, (1a)

Ha :
1

2
×
(
µSS

)
≥ µKDRP. (1b)

For accuracy, we consider an object to be correctly de-
tected if the intersection over union of the groundtruth and
bounding boxes is greater than 50%. Correctly identified
groundtruths are True Positives (TP ), groundtruths not cov-
ered by at least 50% of the detection box, or of the wrong
class are False Negatives (FN ), and bounding boxes that
do not correctly detect exactly 1 object are False Positives
(FP ). Our average accuracy is given as µx = TP

TP+FP+FN
for method x, making our hypothesis

H0 : µKDRP < µSS, (2a)

Ha : µKDRP ≥ µSS. (2b)

4.4. Results

During both of the experiments, time was kept, and the
results are recorded in table 2. The numbers of interest
are in bold; for the UEC food dataset, the KDRP detection
pipeline executes in 48.9% the time that the selective search
pipeline does, and for the CUB dataset, the KDRP pipeline
executes in 48.4% the time that the selective search pipeline
does. Because the execution time of KDRP for both datasets
is less than 50% of selective search, we reject the null hy-
pothesis 1a in favor of the alternate 1b. With detection time
of less than one second, we would be able to do detection
realtime in a 1 frame per second surveillance video.

Although time is a critical component of real time de-
tection, it is worthless without the ability to predict with

Table 2: Timed results for KDRP pipeline versus SS
pipeline

Dataset Task KDRP time SS time KDRP ÷SS

UEC

RP .603 s 1.67 s .361
FE .346 s .265 s 1.305
NS .004 s .003 s 1.333
HS .005 s .006 s .833
Total .96 s 1.96 s .489

CUB

RP .605 s 1.72 s .351
FE .354 s .267 s 1.32
NS .005 s .005 s 1.00
HS .004 s .005 s .80
Total 0.968 1.997 .484

Table 3: Accuracy, and p values comparing likelihood of
generating function differences.

Dataset KDRP accuracy SS accuracy n p-value
CUB (k=1) 67.94 68.26 5794 .758
CUB 66.24 65.18 5794 .00009
UEC 68.03 68.19 2966 .546

accuracy; a trivial algorithm that always guessed a fixed lo-
cation could process thousands of images per second. For
comparison of accuracy we used a paired t-test, comparing
the accuracy on each individual image using both KDRP
and selective search for borth corpora, the results are shown
in table 3.

Based on the p-values calculated from the paired t-test,
we can reject the null hypothesis 2a, and accept the alter-
nate 2b. The only sufficiently large/small p-value to say
that there is a noticable difference in the algorithms is the
CUB dataset when we do not force hypothesis selction to
select exactly 1 detection, and the KDRP pipeline outper-
formed selective search by over 1%. By our results on the
two datasets of table 3, we can say that KDRP is no worse
accurate than selective search for accuracy of detections.

4.5. Ablation Studies

Instead of just assuming that we need as many regions
as possible that are able to run in less than one second is
necessary for such performance, we wish to decrease the
number of regions and see how the performance increases
or decreases correlated with decreased regions. The results
of ablation are shown in figure 4.

Figure 4 suggests a time/accuracy trade-off is available
for the KDRP algorithm; when we are willing to spend a
long amount of time is no less accurate than the selective
search algorithm (alternate hypothesis from equation 2b).
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Figure 4: Effect of less regions per image on detection ac-
curacy for CUB-200 and UEC-100 datasets

5. Conclusion
Our goal was to construct a pipeline that would be able

to place accurate bounding boxes around objects of interest
in a dataset in less than one second, so that it could be used
in a low frame per second surveillance camera setting. The
initial r-CNN models made it unable to do this, because con-
volution was such a time consuming process, but with the
fast-rCNN of Girshick [3] this became possible. KDRP in
this setting is an improvement on the selective search algo-
rithm because it is not worse in terms of performance, but is
customizable with the number of regions, and can generate
more regions than selective search in less than half the time.

Future work involves improving upon KDRP further, by
potentially adding different region aspect ratios or scales
upon acceptance; the nature of the fast r-CNN network
makes additional convolutions take very slightly more time,
and the more regions that we have, the more likely we are
to succeed in detection.
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